Table of Contents:
- t-tests
- One-way ANOVAs
- Two-way ANOVAs
- Multiple comparisons tests
- Linear regressions
- Dose-response regression
t-tests
- In the navigation panel to the left of the spreadsheet, click the plus sign (+) next to the Analysis subsection of your dataset.
- If your dataset has two groups, a t-test will be suggested. If your dataset has three or more groups, a one-way ANOVA will be suggested.
- We calculate descriptive statistics (mean, median, standard deviation, etc.) automatically with every test.
- BioRender offers a few different t-tests. Use the settings in the New Analysis popup to select the appropriate test for your experiment.
- We automatically run two tests to help you pick the best option for your data: the Shapiro-Wilk normality test and the Levene’s test for equality of variances.
- Based on the results of the tests, we will suggest options to select in the New Analysis popup. These suggestions are highlighted with the icon shown below:
Hover over the icon for an explanation of why that option was suggested.
- The results of both tests are included in your analysis output.
- Note: these suggestions are just that – suggestions! Sometimes it might be better to follow the conventions of your field. When in doubt, it’s best to understand what these different options mean so you can make the most informed decision.
Here are all of the tests offered for comparing differences between two groups:
- Unpaired t-test
- Paired t-test
- Welch’s t-test
- Mann-Whitney U Test
- Wilcoxon matched pairs signed ranks test
One-way ANOVAs
- In the navigation panel to the left of the spreadsheet, click the plus sign (+) next to the Analysis subsection of your dataset.
- If your dataset has two groups, a t-test will be suggested. If your dataset has three or more groups, a one-way ANOVA will be suggested.
- We calculate descriptive statistics (mean, median, standard deviation, etc.) automatically with every test.
- BioRender offers a few different variations of the one-way ANOVA. Use the settings in the New Analysis popup to select the appropriate test for your experiment.
- We automatically run two tests to help you pick the best option for your data: the Shapiro-Wilk normality test and the Levene’s test for equality of variances.
- Based on the results of the tests, we will suggest options to select in the New Analysis popup. These suggestions are highlighted with the icon shown below:
Hover over the icon for an explanation of why that option was suggested.
- The results of both tests are included in your analysis output.
Note: these suggestions are just that – suggestions! Sometimes it might be better to follow the conventions of your field. When in doubt, it’s best to understand what these different options mean so you can make the most informed decision.
Here are all of the tests offered for comparing differences between three or more groups:
-
-
- One-way ANOVA
- Welch’s ANOVA
- Kruskal-Wallis test
-
Two-way ANOVAs
- In the navigation panel to the left of the spreadsheet, click the plus sign (+) next to the Analysis subsection of your dataset.
- Select which groups you want to compare (minimum 2 per independent variable)
- Select your experimental design
- Choose whether you want to run multiple comparisons tests or not
- If yes, choose which groups you want to compare
- Then choose your multiple comparisons test. One will be suggested to you based on your chosen comparison groups. These suggestions are highlighted with the icon shown below - hover over the icon for an explanation of why that option was suggested.
- Click Run
Multiple comparisons tests
ANOVA tests by themselves will tell you if there is a significant difference between at least two of the groups but you will need to do a multiple comparisons test to know which specific groups are significantly different from each other.
To run multiple comparison tests:
- Every ANOVA test will offer the option to run a multiple comparison test in the New Analysis popup.
- You first have the option to select if you want to compare all groups against each other or just against the control group.
- Based on your selection in Step 2, you’ll be given the option to run a specific multiple comparison test.
Here are all of the multiple comparison tests offered:
- Tukey
- Dunnett
- Bonferroni
- Dunnett T3
- Games-Howell
Linear Regressions
- In the navigation panel to the left of the spreadsheet, click the plus sign (+) next to the Analysis subsection of your dataset.
- Select your regression model.
- Select whether you want to set the Y-intercept to zero.
- Click Run.
Dose-response regression
Alternate names include dose-response curves, Hill curves, Hill equation, EC50/IC50 analysis.
- In the navigation panel to the left of the spreadsheet, click "Add Analysis".
- Select the type of experiment you ran: either "stimulation" or "inhibition", then click "Continue".
- If you have already logarithmically transformed your X values using base 10, select "Yes". Otherwise, select "No". You can also decide if you want to constrain your Hill slope to 1 or not depending on your experimental setup.
- Click "Run".
Was this article helpful?
Articles in this section
- Creating heatmaps in BioRender graph
- Keeping Your Graph Data Secure in BioRender
- BioRender Graph
- Creating a new graph file
- How to enter data into the spreadsheet
- Performing a statistical analysis
- How to customize your graph
- How to change your data format
- How to plot and analyze continuous (XY) data in BioRender Graph
- Exporting your BioRender graph